
Objects for States 
By Adam Petersen  
 
Originally captured in Design Patterns [1], Objects for States is described in close conjunction with the Singleton pattern. This article will explain 
why this is an unfortunate combination and investigate better alternatives for implementing the pattern in C++. The complete source code for each 
implementation approach is available from my homepage [7]. 

The Singleton Connection 
Design Patterns includes the name Objects for States only as an alias and the pattern is probably better known for its primary name: State. I prefer 
the name Objects for States because it expresses both the intent and resulting structure in a much better way. After all, the main idea captured in the 
pattern is to represent each state as an object of its own. 
 
Besides the naming issue everything starts just fine in the pattern description and nothing indicates that Singleton is about to enter the scene. Not 
even as Design Patterns discusses implementation issues concerning the lifetime of state-objects do they actually mention Singleton. Turn the page 
and suddenly the pattern appears in the sample code with each state implemented as Singleton. Later on Design Patterns officially relates the two 
patterns by concluding that “State objects are often Singletons” [1]. However true that statement may be, is it a good design decision? 

The case against Mr Singleton 
The Singleton pattern is on the verge of being officially demoted to anti-pattern status. In order to get the freshest insider information possible, I 
decided to carry out an interview with the subject himself. Mr Singleton surprised me with his honesty and introspective nature. 
 
- "Mr Singleton, you have been accused of causing design damage [6] and of leading programmers to erroneous abstractions by 
masquerading your tendencies to global domination as a cool object-oriented solution. What are your feelings?" 
- "I'm just an innocent pattern, I did nothing wrong. I feel truly misunderstood." 
- "But your class diagram included in Design Patterns looks rather straightforward. It doesn't get simpler than that - one class only - 
how could anyone possibly misunderstand that?" 
- "Well, that's the dilemma". He continues with a mystic look on his face: "I look simple but my true personality is rather complex, if I may 
put it that way." 
 
I understand he has more to say on the subject. I’ll see if we can get further. 

 
- "Interesting! Care to elaborate?" It seems like he just waited for this opportunity. Mr Singleton immediately answers, not without a tone of pride 
in his voice: 
- "Sure, first of all I'm hard to implement". 
- "Yes, I'm aware of that. Most writings about you are actually descriptions of the problems you introduce. What springs to my mind is, 
hmm, well, no offence, discussions about killing Singletons [9], a subject which makes matters even worse. There’s also all the 
multithreading issues with you involved [10]." 
- "Yeah, right, but my implementation is the minor problem. Can you keep a secret?" 
- "Sure”, I reply crossing my fingers. 
- "Hmm, I shouldn't really mention this, but Design Patterns are over-using me." 
- "Wow! You mean that you are inappropriately used to implement other patterns?" 
- "Yes, you may put it that way. I mean, part of my intent is to ensure that a class only has one instance. But if an object doesn't have 
any internal state, then what's the point of using me? If there isn't any true uniqueness constraint, why implement mechanisms for 
guaranteeing only one, single instance?" 
 
Reflecting on the above dialogue I notice that it describes a common problem with many implementations using Objects for States. In most designs 
the state objects are stateless, yet many programmers, including my younger self, implement them as Singletons. Sounds like some serious tradeoffs 
are made. After all, I like to take a test-driven approach and writing unit tests with Singletons involved is a downright scary thought. Mr Singleton 
agrees: 
 
- "It's sad, isn't it? You end up solving the solution. Not only does it mean writing unnecessary code and that's a true waste; worse is 
that I'm wrong from a design perspective too." 
 
There it is! Implementing Objects for States using Singleton is, I quote once more, "wrong from a design perspective". He said it himself. The 
good news is that in this case a better design also means less code and less complexity. But before jumping into the details of why and how, let’s 
leave Mr Singleton for a while and recap the details of Objects for States. 

Objects for States Recap 
Objects for States works by emulating a dynamic change of type and the parts to be exchanged are encapsulated in different states. A state transition 
simply means changing the pointer in the context from one of the concrete states to the other. Consider a simple, digital stop-watch. In its most basic 
version, it has two states: started and stopped. Applying Objects for States to such a stop-watch results in the structure shown in Figure 1. 

watch_state

+* «pure» ~watch_state()
+* start() : void
+* stop() : void
-* «pure» state_name() : std::string

stop_watch

+ start() : void
+ stop() : void

stopped_state

+* start() : void
-* state_name() : std::string

started_state

+* stop() : void
-* state_name() : std::string

void watch_state::start()
{  
   cout << "Event start() not handled in " 
           << state_name() << '\n';
}

delegates state specific requests to

Figure 1: Structure of Objects for States 



Before developing a concrete implementation, let’s investigate the involved participants and their responsibilities: 
 

• stop_watch: Design Patterns defines this as the context. The context has a pointer to one of our concrete states, without knowing 
exactly which one. It is the context that specifies the interface to the clients. 

• watch_state: Defines the interface of the state machine, specifying all supported events. Depending upon the problem domain, 
watch_state may also implement default actions for different events. The default actions may range from throwing exceptions and 
logging to silently ignoring the events (the UML note in Figure 1 shows an example of a default action implemented in the start() 
function that sends a debug trace to standard output). 

• stopped_state and started_state: These are concrete states and each one of them encapsulates the behaviour associated with the 
state it represents. 

 

It depends 
 
Design Patterns includes many examples of good OO designs. An example is its adherence to one of the most important design principles: 
"Programming to an interface, not an implementation". In fact all patterns in the catalogue, with one notable pathological exception - Singleton, 
adhere to this principle. Yet there are some subtle nuances to watch out for. Upon state transitions the pointer in the context has to be changed to the 
new state. The typical approach is to let each concrete state specify their successor state and trigger the transition. This way each state needs a link 
back to its context. 
 
In its canonical form, Objects for States uses a friend declaration to allow states to access their context object. A friend declaration used this way 
breaks encapsulation, but that's not really the main problem; the problem is that it introduces a cyclic dependency between the context and the 
classes representing states. Such a dependency is an obstacle to unit tests and leads to big-bang integrations, although limited to the micro-universe 
of the context. Fortunately enough it is rather straightforward to break this dependency cycle. The first step is to introduce an interface to be used by 
the states: 

 
class watch_state; 
 
class watch_access 
{ 
 public: 
  virtual void change_state_to(watch_state* new_state) = 0; 
 
 protected: 
  ~watch_access() {} 
}; 
 

This interface is realized in the context and each state is given a reference to it. A state can now make a transition by invoking 
change_state_to(). Now, I deliberately didn't write exactly how the context shall implement the interface. From a design and usability 
perspective public inheritance isn't a good idea; watch_access is a result of our implementation efforts of weakening the dependencies and we 
really don't want to expose implementation details to clients of the stop_watch. 
 
The perhaps simplest solution is offered by the idiom Private Interface [3]. All there is to it is to let stop_watch inherit watch_access 
privately. Now a conversion from stop_watch to watch_access is only allowed within the stop_watch itself. That is, the stop_watch 
can grant controlled access to its states and clients are shielded from the watch_access interface. Or are they really? Well, they are shielded from 
the conceptual overhead of the interface but there’s more to it. 
 
What worries me is that inheritance, private or not, puts strong compile-time dependencies upon the clients of stop_watch. In his classic book 
Effective C++, Scott Meyers advices us to “use private inheritance judiciously” [2]. Meyers also proposes an alternative that I find more 
attractive, albeit with increased complexity: declare a private nested class in the context and let this class inherit publicly. The context now uses 
composition to hold an instance of this class as illustrated in Figure 2. Not only is it cleaner with respect to encapsulation, it also allows us to control 
the compilation dependencies of our clients as it is possible to refactor it to a Pimpl [8] solution if needed. 

 
 

 

 
 
 

watch_state

+* «pure» ~watch_state()
+* start() : void
+* stop() : void
-* «pure» state_name() : std::string

stop_watch

+ start() : void
+ stop() : void

«nested class»
state_controller

+ state_controller(watch_state*)
+* change_state_to(watch_state*) : void

«interface»
watch_access

+* «pure» change_state_to(watch_state*) : void
# ~watch_access()

specifies transitions through

-current_state

Figure 2: Decouple through a nested class 



Enough of fancy diagrams – let’s carve it out in code: 
 
class stop_watch 
{ 
 public: 
  ... 
 private: 
 
  // Meyers Item 39: Prefer public inheritance plus composition in favour of private inheritance. 
  class state_controller : public watch_access 
  { 
    ... 
    public: 
      ... 
      virtual void change_state_to(watch_state* new_state) 
      { 
         ... 
      } 
    }; 
   
  state_controller state; 
}; 

 
With the main structure of the context in place, we’re ready to tackle the allocation of states. 

A Dynamic Allocation Scheme 
Our first approach is to allocate the states dynamically as they are needed. A state transition simply means allocating the new state, wrapped in a 
suitable smart pointer from boost [4], and passing it to the context. Here's an example on the stopped-state: 

 
// watch_state.h 
... 
typedef boost::shared_ptr<watch_state> watch_state_ptr; 
 
// stopped_state.cpp 
void stopped_state::start(watch_access& watch) 
{   
   watch_state_ptr started(new started_state); 
    
   watch.change_state_to(started); 
} 
 

The started-state has an identical mechanism, but of course it allocates stopped_state as its successor. With the allocation scheme in place we 
can implement the context: 

 
// stop_watch.h 
class stop_watch 
{ 
 public: 
  stop_watch(); 
  void start(); 
  void stop(); 
 
 private: 
 
  class state_controller : public watch_access 
  { 
      watch_state_ptr current_state; 
 
    public: 
      state_controller(watch_state_ptr initial_state) 
         : current_state(initial_state) 
      { 
      } 
 
      // Hide the extra indirection for the client by using en masse delegation. 
      watch_state_ptr operator->() const 
      { 
         return current_state; 
      } 
 
      virtual void change_state_to(watch_state_ptr new_state) 
      { 
         current_state = new_state; 
      } 
    }; 
   
  state_controller state; 
}; 

 



Here we let the stop_watch specify its initial state upon construction: 
 
// stop_watch.cpp 
stop_watch::stop_watch() 
  : state(watch_state_ptr(new stopped_state)) 
{ 
} 
 

Our preference of public inheritance in combination with composition over private inheritance leads to an extra level of indirection. We can hide this 
indirection by overloading operator-> in the state_controller, which makes the context's delegation to the states straightforward: 

 
// stop_watch.cpp 
void stop_watch::start() 
{ 
  state->start(state); 
} 
 
void stop_watch::stop() 
{ 
  state->stop(state); 
} 
 

Dynamic allocation of the states is a simple solution, yet it makes several tradeoffs: 
 

 
Sharing States - The Return of the Singletons 
With instance variables in the states, dynamic allocation is a simple solution. However, in most applications of Objects for States the state-objects 
are there just to provide a unique type and do not need any instance variables. Design Patterns describes this as "If State objects have no 
instance variables […] then contexts can share a State object" [1]. In their sample code Design Patterns notes that this is the case, only one 
instance of each state-object is required, and with that motivation makes each state a Singleton. 
 
After my interview with Mr Singleton I promised to explain why this is the wrong abstraction. The reason is that the responsibility of managing 
state-instances is put on the wrong object, namely the state itself, and an object should better not assume anything about the context in which it is 
used. Design Patterns describes a particular case where only one instance is needed. This need, however, doesn’t imply a uniqueness constraint on 
the state-objects themselves that would motivate the Singletons. Further, whether states should be shared or not should be decided in the context. 
Obviously the Singleton approach breaks this rule and, for all practical purposes, forces all states to be stateless. 
 
To summarize, Singleton leads to: 

 
1. an erroneous abstraction,  
2. unnecessary code complexity,  
3. superfluous uniqueness constraints, 
4. and it seriously limits unit testing capabilities. 

  
Clearly another approach would be preferable. However, before sharing any states, I would like to point to Joshua Kerievsky's advice that "it's 
always best to add state-sharing code after your users experience system delays and a profiler points you to the state-instantiation 
code as a prime bottleneck" [5]. 

 

Going Global 
When implementing Objects for States the uniqueness constraint of Singleton is actually an unwanted by-product of the solution. So, let's focus on 
the second part of Singleton's intent: "provide a global point of access" [1]. These are the things programmers speak low about - nobody wants to 
get caught using globals, yet global variables are more honest about the intent than to camouflage them as Singletons. Consider the following code 
snippet: 

 
// possible_states.h 
class watch_state; 
 
namespace possible_states{ 
extern watch_state* stopped; 
extern watch_state* started; 
} 
 

+ Allows for stateful states, i.e. instance variables in the states. 
 

- Potentially many and frequent heap allocations may have negative performance impact. 
 

- Hard to change to sharing states (such a change ripples through all states). 
 

- Dependent upon a concrete class (i.e. the next state), which is a barrier to unit tests. 



// stopped_state.cpp 
#include "possible_states.h" 
 
void stopped_state::start(watch_access& watch) 
{   
   using possible_states::started; 
    
   watch.change_state_to(started); 
} 
 

No constraints on the number of possible instances in the states themselves. But who defines them? The context seems like a good candidate: 
 
// stop_watch.cpp 
namespace{ 
stopped_state stopped_instance; 
started_state started_instance; 
} 
 
namespace possible_states{ 
watch_state* stopped = &stopped_instance; 
watch_state* started = &started_instance; 
} 
 

Except for the construction (we have to initialize our state_controller with possible_states::stopped instead of a dynamically 
allocated state), the rest of the context code stays the same. Any tradeoffs made? Yes, always. Here they are: 
 

 

+ Conceptually simple and definitely simpler than the classic Singleton approach (same characteristics, but more honest in its intent). 
 

+ No dependencies from the states upon concrete classes (only a forward declaration is actually used in possible_states.h). 
 

+ Primitive but possible way to unit test individual states by use of link-time polymorphism (this technique uses the linker to link in 
different state definitions, i.e. test-stubs, instead of the real ones in stop_watch.cpp). 

 
+- States are shared. 

 
- Forced to share states, which makes it virtually impossible to use stateful states. 

 
- Still not quite true to the "program to an interface" principle. 

 
- Scalability problems with possible_states.h, which must be updated each time a state is added or removed. 
 



In Control 
Using link-time polymorphism to unit test? Yuck! Not particularly OO, is it? No, it sure isn't, but I wouldn't discard a solution just by that objection. 
Anyway, what about finally approaching a solution that removes the dependencies between the sub-states? Moving the state management into the 
state_controller makes it possible. 

 
// watch_access.h 
class watch_access 
{ 
public: 
   virtual void change_to_started() = 0; 
 
   virtual void change_to_stopped() = 0; 
 ... 
}; 
 
// stop_watch.h 
class stop_watch 
{ 
  ... 
   
  class state_controller : public watch_access 
  { 
      started_state started; 
      stopped_state stopped; 
       
      watch_state* current_state; 
 
    public: 
      state_controller() 
         : current_state(&stopped) 
      { 
      } 
 
      virtual void change_to_started() 
      { 
         current_state = &started; 
      } 
       
      virtual void change_to_stopped() 
      { 
         current_state = &stopped; 
      } 
       
      ... 
    }; 
  ... 
}; 
 

The state_controller allocates all possible states and switches between them as requested by the states. What's left to the states is specifying 
their successors in abstract terms: 

 
// stopped_state.cpp 
void stopped_state::start(watch_access& watch) 
{ 
   watch.change_to_started(); 
} 
 
// started_state.cpp 
void started_state::stop(watch_access& watch) 
{ 
   watch.change_to_stopped(); 
} 
 

And here we are, finally programming to an interface and not an implementation. Let’s look at the resulting context: 

 

+ The responsibility for the allocation scheme is where it should be: in the context. 
 

+ States are easily shared among instances by making them static. Such a decision is taken in the context and not coded into the states 
themselves as in the traditional Singleton approach. 

 
+ All states written towards an interface, which make them easy to unit test. 

 
- Doesn't scale well. watch_access runs the risk of growing fat as it has to provide methods for all possible states, which is a 
similar problem to the global approach with possible_states.h. 
 



A Generative Approach 
The previous solution indicated potential scalability problems; adding new states requires modifications to watch_access and its implementer, 
state_controller. In my experience this has been an acceptable trade-off for most cases; as long as the state-machine is stable and relatively 
few states are used (5 - 10 unique states) I wouldn't think twice about it. However, in the ideal world, introducing a new state should only affect the 
states that need transitions to it. Reflecting upon our last example, although limited to only two states, the pattern is clear: the different methods for 
changing state (change_to_started(), change_to_stopped()) are identical except for the type encoded in the function name. Sounds 
like a clear candidate for compile-time polymorphism. The core idea is simple: each state instantiates a member function template with the next state 
as argument. 

 
// Example from stopped_state.h 
void stopped_state::start(watch_access& watch) 
{   
   watch.change_state_to<started_state>(); 
} 
 

Each member function template instantiation creates the new state object and changes the reference in the context. Something along the lines of: 
 

class X 
{ 
... 
   template<class new_state> 
   void change_state_to() 
   { 
      watch_state_ptr created_state(new new_state); 
       
      current_state = created_state; 
   } 
}; 
 

A quick quiz: in the listing above, what class should X be? The states specify their transitions by invoking methods on watch_access and by 
means of the virtual function mechanism the call is dispatched to the context. Now, there's no such beast as virtual member function templates in 
C++. The solution is to intercept the call chain and capture the template argument in an, necessarily non-virtual, member function template, create 
the new state instance there and delegate to the context by a virtual function. 

 
// watch_access.h 
class watch_access 
{ 
public: 
 
   template<class new_state> 
   void change_state_to() 
   { 
      watch_state_ptr created_state(new new_state); 
       
      change_state_to(created_state); 
   } 
 
protected: 
   ~watch_access() {} 
   typedef boost::shared_ptr<watch_state> watch_state_ptr;  
private: 
   // Delegate the actual state management to the derived class through this method. 
   virtual void change_state_to(watch_state_ptr new_state) = 0; 
}; 
 
// stop_watch.h 
class state_controller : public watch_access 
{ 
   watch_state_ptr current_state; 
 
 public: 
   state_controller() 
   { 
      // Specify the initial state. 
      watch_access::change_state_to<stopped_state>(); 
   } 
 
   virtual void change_state_to(watch_state_ptr new_state) 
   { 
      current_state = new_state; 
   } 
   ... 
}; 
 

Considering the tradeoffs shows that the one step forward in scalability pushed us back with respect to dependency management: 

+ Scales well, no know-them-all class; the compiler generates code to instantiate states. 
 

- The states depend upon concrete classes. 
 



Recycling States 
The last example brought us back to a dynamic allocation scheme. However, that knowledge is encapsulated within watch_access and we can 
easily switch to another allocation strategy. For example, in a single-threaded context static objects are a straightforward way to share states and 
avoid frequent allocations: 

 
// watch_access.h 
class watch_access 
{ 
public: 
   template<class new_state> 
   void change_state_to() 
   { 
      static new_state created_state; 
       
      change_state_to(&created_state); 
   } 
   ... 
}; 
 

State objects can also be recycled by introducing a variation of the design pattern Flyweight [1]. In fact, Design Patterns links these two patterns 
together with its statement that “it's often best to implement State […] objects as flyweights”. Does the claim hold true? Let’s try it out and see. 

 
First each object is associated with a unique key. The idea is, that the first time an object is requested from the flyweight factory, a look-up is 
performed. If an object with the requested key already exists a pointer to that object is returned. Otherwise the object is created, stored in the factory, 
and a pointer to the newly created object returned. The example below introduces a pool for state objects in a flyweight_factory using the 
unique type-name as key.  
 

template<class flyweight> 
class flyweight_factory 
{ 
public: 
 
   typedef boost::shared_ptr<flyweight> flyweight_ptr; 
 
   template<class concrete_flyweight> 
   flyweight_ptr get_flyweight() 
   { 
      const std::string key(typeid(concrete_flyweight).name()); 
       
      typename pool_type::const_iterator existing_flyweight(pool.find(key)); 
       
      if(pool.end() != existing_flyweight) { 
         return existing_flyweight->second; 
      } 
      else { 
         flyweight_ptr new_flyweight(new concrete_flyweight); 
          
         const bool inserted = pool.insert(std::make_pair(key, new_flyweight)).second; 
         assert(inserted); 
          
         return new_flyweight; 
      } 
   } 
 
private: 
   typedef std::map<std::string, flyweight_ptr> pool_type; 
   pool_type pool; 
}; 
 



The flyweights are fetched from the instantiations of the member function template in watch_access. 
 
class watch_access 
{ 
   typedef flyweight_factory<watch_state> state_factory; 
   state_factory factory; 
  
public: 
    
   template<class new_state> 
   void change_state_to() 
   { 
      change_state_to(factory.get_flyweight<new_state>()); 
   } 
   protected: 
   ~watch_access() {} 
    
   typedef state_factory::flyweight_ptr watch_state_ptr; 
    
private: 
   // Delegate the actual state management to the derived class through this method. 
   virtual void change_state_to(watch_state_ptr new_state) = 0; 
}; 
 

The state_controller stays as before because the internal protocol, change_state_to(watch_state_ptr), is left untouched. 

Conclusion 
As this article has highlighted the problems inherent in a Singleton based Objects for States solution, it feels fair to let Mr Singleton get the final 
word. After all, if I was successful his career may suffer. Will the two patterns finally be separated? 

 
- “I sure hope so”, Mr Singleton answers, “Clearly there are better alternatives and if I ever get the opportunity I’m prepared to sacrifice 
my link in Objects for States in the name of good design.” 
- “That’s a great attitude and I’m delighted you take it that way. Speaking of design, any particular solution you would recommend?” 
- “I don’t think you can put it that way. Like all design alternatives each one of them comes with its own set of tradeoffs, which must be 
carefully balanced depending on the problem at hand.” 
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+ Scales well, no know-them-all class; the compiler generates code to instantiate states. 
 

+ Allows for sharing states among all instances of stop_watch by making the flyweight_factory static in watch_access. 
 

+ Generic flyweight_factory for all default-constructable types. 
 

- The states depend upon concrete classes. 
 

- Relatively high design complexity. 


